
Using Boot
Environments at

Scale
Allan Jude – allanjude@freebsd.org

Klara Systems

mailto:allanjude@freebsd.org

Introduction
● FreeBSD Server Admin since 2001
● 4 Years as FreeBSD committer

○ ZFS, installer, boot loader, GELI (FDE)
● FreeBSD Core Team (2016 - Present)
● Co-Author of “FreeBSD Mastery: ZFS” and

“FreeBSD Mastery: Advanced ZFS” with Michael
W. Lucas – ZFSBook.com

● Host of BSDNow.tv Podcast
● GSoC Mentor for bectl(8)

http://www.zfsbook.com

What is a Boot Environment (BE)

● Similar in concept to NanoBSD
○ Divides the disk into 2 partitions (firmware images)
○ Install the stock image to both
○ At upgrade time, overwrite the inactive image
○ Boot-once to the newer image. If it fails, or is

otherwise unserviceable, reboot to good image
○ If the new image is accepted, configure it as the

default for all future reboots
○ Repeat process for next upgrade

ZFS Boot Environments

● ZFS takes this concept further
● ZFS allows you to have many filesystems,

without needing to partition your disk
● Separate the OS (root FS) from user data

(home directories, logs, databases)
● ZFS has instant snapshots and clones
● Snapshot and clone the root filesystem

before you make changes or upgrade

How?

● Now you have multiple different ‘versions’ of
your root filesystem to choose from

● Modern FreeBSD boot loader allows you to
choose from different rootfs at boot

● Now you can ‘revert’ an upgrade without
losing changes to home directories, logs,
databases or other filesystems, further
separating the ‘OS’ from the ‘Data’

Control

● The flexibility of ZFS puts you in control
● Any files in the filesystem mounted as / are

treated as part of the operating system
● Any files in other filesystems, are retained,

no matter what ‘version’ of the OS you boot
● Packages (/usr/local) and the pkg database

(/var/db/pkg) are included in /. This allows
you to ‘undo’ a pkg upgrade

Default BE layout
NAME USED REFER MOUNTPOINT
zroot 19.5G 88K /zroot
zroot/ROOT 1.67G 88K none
zroot/ROOT/default 1.67G 1.67G /
zroot/tmp 88K 88K /tmp
zroot/usr 12.3G 88K /usr
zroot/usr/obj 12.3G 8.03G /usr/obj
zroot/usr/home 140M 140M /usr/home
zroot/var 153M 88K /var
zroot/var/audit 88K 88K /var/audit
zroot/var/crash 152M 152M /var/crash
zroot/var/log 352K 352K /var/log
zroot/var/mail 132K 132K /var/mail
zroot/var/tmp 88K 88K /var/tmp

That’s Great,
But I Already

Knew That

Going Further

● When upgrading a system, we wanted to
replace the entire OS with a newer version

● So we just install a new boot environment
● But what about /etc? My machine needs to

have a configured network for puppet to
replace the rest of the configuration

● Let’s make /etc its own filesystem, it can
persist through the upgrade this way

What Could Possibly
Go Wrong?

Not So Fast...
● A lot of boot things depend upon /etc
● No /etc/fstab, no /etc/rc, no /etc/ttys
● Don’t want to etcupdate or mergemaster
● Another Idea: Steal from NanoBSD: A

read-only /etc recreated at boot from /cfg
● Then learned about init_script see loader(8)

● Use init_script to mount /cfg. Replace
persistent files in /etc with symlinks to /cfg

What do you run from init_script?
mount -p | while read _dev _mp _type _rest;
do
 [$_mp = "/"] || continue
 if [$_type = "zfs"] ; then
 pool=${_dev%%/*}
 zfs mount ${pool}/cfg
 fi
 break
done

So how does that work?

● /cfg populated with ~10 files we care about
● Configure network (rc.conf.*), sysctls, SSHd

keys, fstab (for jails), etc
● Rest of /etc can be replaced with stock files
● Never have to merge /etc/rc.d files
● Originally had to manually recreate symlinks

because our BE images were stock
● Used a VM and a script to make new BEs

How do you deploy a Boot Env?
1. Create an image:

a. zfs snapshot zroot/ROOT/bename@snapname
b. zfs send -pec zroot/ROOT/bename

@snapname | xz -T0 -9 > bename.zfs.xz
2. Apply the image:

a. fetch -o - https://svr/bename.zfs.xz
| unxz | zfs recv zroot/ROOT/newbe

3. Boot Once:
a. zfsbootcfg zfs:zroot/ROOT/newbe:

Shortcomings

● We were still doing pkg upgrade -f in a
chroot for the base system BE plus each jail

● Building images was painfully manual
● Missing a step or file almost every time
● Bootstrapping a fresh install was still a

bunch of manual work, over slow IPMI
● Not usable by anyone else, too many rough

edges and sharp corners

Using BEs at Scale

● Over 100 servers, 38 DCs, 11 countries
● Only myself and 1 full time sysadmin
● Mix of versions, 10.4, 11.1, 12-CURRENT
● freebsd-update upgrade too manual
● zfs recv; zfsbootcfg; reboot takes

less than a minute, and fails gracefully
● Upgrade remote machines with confidence

even without console access

Not Just For Packages Anymore

● Poudriere is the tool used to build the official
FreeBSD binary packages, very quickly

● Uses Jails, and optionally ZFS and TMPFS
● Starts 1 jail per core, builds one package in each

jail, only dependencies installed, no network
● You can use it to build your own customized

package (ports tree * freebsd version * arch * set)
● Supports: iso, iso+(z)mfs, usb, usb+(z)mfs,

rawdisk, zfsrawdisk, tar, firmware, embedded

A Better Way to Build

● During the development of this upgrade
procedure, I happened to be talking with
Baptiste Daroussin (bapt@) who informed me
of his work on poudriere image

● Designed to create customized VM or USB
images. Used at Gandi to build FreeBSD
images for their Public Cloud Customers

● Supports overlays and preinstalled packages

Poudriere Image ZFS BE Support

● After discussing it, we decided that zfs
send should be added as an output format

● Add -t zfssend (full pool replication
stream) and -t zfssend+be (just the BE)

● Modified overlay support to handle symlinks
● Added support for a ‘ZFS Layout’ config file,

in the same format used by bsdinstall
● Control what files are part of the Boot Env.

What About Brand New Systems?

● Previously, we used IPMI Remote Media
feature to run bootonly.iso on each machine
and manually ran through bsdinstall

● No PXEBOOT with only 1-3 servers per DC
● Now we make our own iso+mfs image
● Prompts for some config details (no DHCP)
● Partition disks and create an empty pool
● Then zfs recv a full pool image on to it

Poudriere Image for Everyone
● Many recent enhancements upstreamed
● Work-in-Progress can be found on my github
● Use it to create your own custom images
● Builds from poudriere jails you have already

created to build packages. Can create from
releases without having to compile!

● New Image Formats? vmdk, qcow2, vhd, MBR
(CSM & EFI), GPT (CSM, EFI, both), <yours>

Enhancing Poudriere Image

● Needs better naming for image types
● Should support many more combinations
● Replace tools/boot/rootgen.sh
● Should integrate various ‘Cloudware’
● Replicate features of ‘release’ building bits
● Support for post-build scripts (chroot)
● More appliance building features - talk to me
● What features do you need?

Improvements to Come
● Automate the process of confirming an image is

good, some combination of:
○ Uptime, Minimum level of served, self-tests

● Use bectl or libbe to set the shiney new boot
environment as the default for future boots

● Extend zfsbootcfg
○ Currently just a string
○ Delphix uses failure count down. If counter reaches

zero, boots into a phone-home rescue mode
○ Use a structured format to support both and more

Nested Boot Environments

● The stretch goal of the bectl(8) project was to
add support for ‘nested’ BEs (bdrewery style)

● Example: have a /usr/src that matches the
running kernel/world in each boot environment

● Would like better support for recursive cloning
(ZFS Channel Program would be great for this)

● What filesystems would you like separate from
the root FS, but part of the boot environment?

What Are Your
Questions?

BSDNow.tv
● Weekly video podcast about the latest news in the

BSD and IllumOS world
● Always looking for developers to interview
● Our archives are full of goodies (100+ Interviews):

○ Matt Ahrens Kirk McKusick
○ George Wilson Josh Paetzel
○ Bryan Cantrill Justin Gibbs
○ Adam Leventhal Paweł Jakub Dawidek
○ Richard Yao Sean Chittenden
○ Alex Reese Ryan Zezeski

